
30 The Delphi Magazine Issue 56

Splat: Part 2,
Going International
by Ray Lischner

Last month’s article introduced
the Splat program, a game for

small children to pound on the key-
board and watch interesting
shapes and hear fun sounds. This
month, Splat goes international,
goes on a compression diet, and
gains some small but important
features.

International Splat
Splat stores all its sounds in a
resource file that is linked into
Splat.exe. Delphi makes it easy to
create language-specific resource
files that are linked as separate
DLLs, one DLL per language. It
seems natural to use this feature in
Splat. The sounds for letters and
digits are the names of those let-
ters and digits, so these sounds
can easily be localized for different
languages and countries. Before
jumping in, though, take some time
to understand how Windows
handles keystrokes.

If you remove the printing on top
of the keys, all Western keyboards
are pretty much the same. Even
Greek and Cyrillic keyboards are
the same. The only significant dif-
ferences between these keyboards
are the characters printed on top
of the keys. When you press a key,
the keyboard sends a number,
called the scan code, to Windows.
The scan code that a key generates
is the same regardless of what is
printed on the key. Windows uses a
code page to interpret the scan
code and map it into a virtual key
code. For example, in the United
States, the key labelled Q (the
upper-leftmost letter on the key-
board) generates scan code 16,
which corresponds to virtual key
code 81 (which is the ANSI value
for the letter Q). In France, how-
ever, the same key represents the
letter A. The scan code is the same
(16), but the code page for French
maps the scan code to virtual key

code 65 (the ANSI value for the
letter A).

Rarely does a program work
directly with scan codes. Splat, like
most programs, handles only
virtual key codes. For example,
when a French user presses A,
Splat plays the sound for the letter
A, and when an American user
presses Q, Splat plays the sound
for the letter Q. Splat doesn’t know
that both users pressed the same
key. As you can see, Splat already
does the right thing for handling
different keyboard layouts. The
next step is to have Splat play a
different sound, depending on the
virtual key code that it receives.
First, though, you need to record
the sounds in other languages.

The Recorder program records
sounds according to the virtual key
code, so you can use it to record
sounds for any language, even with
your own native keyboard. To
make it easier to use, though, you
should make the Recorder aware
of the desired language, so it can
display the correct character for
the key being pressed. The display
character depends on the code
page for the desired language.
Before getting too deep in the finer
points of upgrading the Recorder
program, it’s time to examine
Delphi’s support for multiple
languages more closely.

Localization
Internationalization is the process
of generalizing an application to
suit multiple locales. Localization
is the act of taking an international-
ized application and supplying the
details for a specific locale.

The term internationalization
often has the absurd abbreviation
i18n. Less often, localization is
abbreviated l10n. (The number
tells you many letters have been
omitted from the w2d to make the
a10n.)

Internationalizing a Delphi
application is easy:
➢ Use resourcestring declara-

tions instead of string literals.
➢ Use position specifiers in For-

mat strings (eg, File %0:s not
found: Windows error message is
%1:s) because different lan-
guages might need to change
the order of the arguments.

➢ Leave room on a form for
prompts and other text that
might be a different length in a
different language.

➢ Don’t use Val or Str to convert
numbers and strings, but use
the routines in the SysUtilsunit
instead. The user can choose
formats for dates, times, cur-
rency, and more in the Regional
Settings Control Panel applet,
and the SysUtils routines heed
these settings.

Localizing an application usually
involves translating resource-
strings and text on forms. Local-
izing Splat means translating the
sounds it makes when you press
the letter and digit keys. (You can
also translate the initial help
message: ‘Press ESC to exit the pro-
gram’.) Splat stores its sounds as
WAVE resources, and you can
customize the letters and digits for
different countries and languages.
For example, you might want the Z
key to play an American ‘zee’ in the
United States and ‘zed’ in England.
In Russia, the same key would be
read as ‘ya’ (the ‘_’ character in
Cyrillic).

Delphi performs resource local-
ization by storing locale-specific
resources in a separate DLL. Each
language, or language and country
(to handle local dialects), has a
unique file name extension (such
as .FRA for standard French and
.FRS for Swiss French). A project
can have many different resource
DLLs, each with its own language-
specific extension. At runtime, the
application loads a resource DLL
based on the Windows locale, and
gets its resources from that DLL
instead of from the resources in
the application’s .EXE file.

Splat uses the resource DLL to
store language-specific sounds.
When Splat starts, Delphi
automatically loads the resource

April 2000 The Delphi Magazine 31

DLL. Splat passes the handle of the
resource DLL to PlaySound instead
of passing hInstance. It calls the
FindResourceHInstance function to
get the resource DLL handle.

In order to create the resource
DLLs, first you need sound files in
another language, which requires
some changes to the Recorder.

Internationalizing
The Recorder
The first task is to modify the
Sound Recorder program to record
the sounds for other languages.
Two changes are needed: first, let
the user choose a different key-
board layout and, second, when
displaying the character that is
being recorded, the program must
display the character from the
appropriate character set. You can
record sounds for any language,
even though you are using your
own keyboard with its keytop
labels that are appropriate only for
your native language. If the user
chooses the Russian keyboard
layout, for example, pressing the Z
key should display _, so the user
knows to say, ‘ya’.

The first step is to install support
for alternative keyboard layouts. In
the Keyboard Control Panel applet,
select the Input Locales tab. (Win-
dows NT and 98 support the Input
Locales tab. Windows 95 does not.)
Click the Add button, choose a new
locale, and click OK. You can add as
many different locales as you want.
Choose one locale to be the
default. The Keyboard Properties
dialog box also lets you choose a
keyboard shortcut that changes
the current input locale. Each
time you press this keyboard
shortcut, Windows selects the next

keyboard layout as the current
layout. It cycles though all of the
locales that you installed. To see
which locale is currently active, be
sure to check the Enable indicator
on taskbar checkbox. The taskbar
will show a two-letter abbreviation
for the current locale. Try firing up
WordPad and typing. Change
locales using the keyboard short-
cut and type some more to see
how Windows re-interprets your
keystrokes according to the new
locale. The Sound Recorder will do
the same thing.

Delphi’s SysUtils unit declares
the Languages object, which stores
information about all the different
languages and locales that Win-
dows supports. The Sound
Recorder needs to work with the
locales for which you have
installed a keyboard layout, so it
iterates through all the languages
and tries to load a keyboard layout
for each one. When it succeeds, it
saves the locale name and the
handle for the keyboard layout in a
TComboBox. When the user chooses

a new language from the combo-
box, the Recorder selects the cor-
responding keyboard layout. The
combobox is preferable to the key-
board shortcut because the
Recorder tries to record a sound
for every keypress, including the
keyboard shortcut for choosing a
new language. Listing 1 shows the
GetKeyboardLayout method and
the combobox’s OnChange event
handler.

When the user presses a key to
record a sound, the Recorder dis-
plays a user-friendly name for the
key in the status bar. That task is
more complicated now that the
character might be from an
entirely different character set. If
you are using Windows 9x, you
must have the correct fonts
installed in order to see these char-
acters, and the Recorder must
know which font to use. An easier
solution is to use Windows NT or
2000, which support the Unicode
character set.

Unicode is a 16-bit character set
that unifies many different charac-
ter sets. American, European,
Cyrillic, Greek, Arabic, and Asian
languages all have representation
in the Unicode standard. Mapping
a virtual key code to a Unicode
character is easy with the
ToUnicode function (which exists
in Windows NT and 2000, but does
not exist in Windows 9x). Listing 2
shows the new declaration for

// Load all the keyboard layouts that the user has installed.
// The user can select a new keyboard layout at runtime.
procedure TForm1.GetKeyboardLayouts;
var
I: Integer;
Index: Integer;
Handle: HKL;

begin
for I := 0 to Languages.Count-1 do begin
Handle := LoadKeyboardLayout(PChar(IntToHex(Languages.LocaleID[I], 8)),
Klf_Substitute_OK or Klf_NoTellShell);

if Handle <> 0 then begin
Index := KeyboardList.Items.AddObject(Languages.Name[I], TObject(Handle));
// Pre-select the current keyboard layout.
if Handle = GetKeyboardLayout(0) then
KeyboardList.ItemIndex := Index;

end;
end;

end;
// When the user selects a new keyboard, tell Windows
// to activate that keyboard layout.
procedure TForm1.KeyboardListChange(Sender: TObject);
var
Handle: HKL;

begin
if KeyboardList.ItemIndex >= 0 then begin
Handle := HKL(KeyboardList.Items.Objects[KeyboardList.ItemIndex]);
Win32Check(ActivateKeyboardLayout(Handle, 0) <> 0);

end;
end;

➤ Listing 1

// Convert a virtual key code to a user-friendly character or key name.
function KeyCodeToDisplay(KeyCode: Word): WideString;
var
KeyState: TKeyboardState;
Text: array[0..3] of WideChar;

begin
GetKeyboardState(KeyState);
FillChar(Text, SizeOf(Text), 0);
if ToUnicode(KeyCode, 0, KeyState, Text,
SizeOf(Text) div SizeOf(WideChar), 0) > 0 then
Result := Text

else begin
Result := KeyCodeToText(KeyCode);
if (Length(Result) = 6) and (Copy(Result, 1, 4) = 'Char') then
Result := Result + ' (' + ShortCutToText(KeyCode) + ')';

end;
end;

➤ Listing 2

32 The Delphi Magazine Issue 56

the KeyCodeToDisplay function. If
the virtual key code represents a
Unicode character, the function
returns that character as a string.
Otherwise, it uses the old version
of the function to convert the key
code to a name, such as F1 or PgUp.
Note that the function’s return
type is now WideString instead of
plain string.

A WideString is similar to an ordi-
nary string (that is, AnsiString),
except that each character is a
WideChar instead of AnsiChar. (Char
is currently the same as AnsiChar.)
A WideChar is two bytes long and
stores a Unicode character. Delphi
can automatically convert
between narrow and wide strings,
but when converting from wide to
narrow strings, you often lose

information. If Delphi cannot rep-
resent a wide character in the
narrow string, it uses a default
character (usually ?). Thus, it is
important to keep track of the
WideString and not let Delphi con-
vert it to a plain string.

To avoid converting the wide
string to a narrow string, you must
use controls that support wide
characters. Windows NT and 2000
(but not Windows 9x) support
wide controls, that is, controls that
work with Unicode characters and
strings. Delphi’s VCL doesn’t use
these controls, though, to maintain
compatibility with Windows 9x.
Thus, to display Unicode text, you
cannot use TLabel or TStaticText,
but must use entirely different
functions to create the window,
send messages to it, and so on.
Instead of CreateWindow, you must
use CreateWindowW, for example.
(CreateWindow is a synonym for
CreateWindowA, where the A means
ANSI. Most API functions come in A
and W flavors, and Delphi maps the
plain name to the A variety.)

It’s easy to make a TWideLabel
control that inherits from TLabel.
The only difference is that
TWideLabel has a new Caption prop-
erty whose type is WideString. It
overrides the DoDrawText method
to draw the wide string by calling
the Windows API function
DrawTextW instead of TLabel’s use

of DrawText (which is really
DrawTextA). Listing 3 shows the
TWideLabel control. Note that
Delphi does not store wide strings
in a .DFM file, but converts the
wide string to an ANSI string. It
doesn’t matter in this application
because the Recorder doesn’t
need to set the Caption at
design-time, only at runtime. (To
use the TWideLabel component,
install the WideCtls package in
Delphi’s IDE. The component is
added to the Component Palette’s
Splat tab.)

To display the character being
recorded, add a group box and a
TWideLabel in the group box, with
the alignment set to alClient.
When the user presses a key, set
the wide label’s caption to the
key’s display text.

For the sake of completeness,
the status bar also shows the key.
The Windows status bar control
can handle Unicode even if it is
created as an ANSI control. The
only difference is that you must set
the status bar panel’s caption by
calling SendMessageW, as shown in
Listing 4.

You can now use the updated
Recorder to record sounds for
other languages. As you will learn
in the next section, it is most con-
venient to store each language’s

type
// TWideLabel: just like TLabel, but supports wide strings
TWideLabel = class(TLabel)
private
fWideCaption: WideString;
procedure SetWideCaption(const Value: WideString);

protected
procedure DoDrawText(var Rect: TRect; Flags: Longint);
override;

published
property Caption: WideString read fWideCaption
write SetWideCaption;

end;
// Copied from TLabel.DoDrawText, but changed to use
// DrawTextW insted of DrawText (which is DrawTextA).
procedure TWideLabel.DoDrawText(
var Rect: TRect; Flags: Integer);

var
Text: WideString;

begin
Text := Caption;
if (Flags and DT_CALCRECT <> 0) and
((Text = '') or ShowAccelChar and (Text[1] = '&') and
(Text[2] = #0)) then
Text := Text + ' ';

if not ShowAccelChar then
Flags := Flags or DT_NOPREFIX;

Flags := DrawTextBiDiModeFlags(Flags);
Canvas.Font := Font;
if not Enabled then begin
OffsetRect(Rect, 1, 1);
Canvas.Font.Color := clBtnHighlight;
DrawTextW(Canvas.Handle, PWideChar(Text), Length(Text),
Rect, Flags);

OffsetRect(Rect, -1, -1);
Canvas.Font.Color := clBtnShadow;
DrawTextW(Canvas.Handle, PWideChar(Text), Length(Text),
Rect, Flags);

end else
DrawTextW(Canvas.Handle, PWideChar(Text), Length(Text),
Rect, Flags);

end;
// When the user changes the text, redraw the control.
procedure TWideLabel.SetWideCaption(
const Value: WideString);

begin
fWideCaption := Value;
AdjustBounds;
Invalidate;

end;

➤ Listing 3
// Set the status information in the right-hand panel of the status bar.
procedure TForm1.SetStatusInfo(const Info: WideString);
begin
// Do this: "StatusBar.Panels[1].Text := Info;" but using Unicode
SendMessageW(StatusBar.Handle, Sb_SetTextW, 1, LParam(PWideChar(Info)));

end;

➤ Listing 4

➤ Figure 1

34 The Delphi Magazine Issue 56

sounds in a separate directory,
using a language and country code
as the directory name. For exam-
ple, RUS for Russian, ENU for English
in the United States, ENG for English
in England, and so on. Figure 1
shows the new Recorder recording
a sound for α (Alpha), which is the
Greek character for the key
labelled Aon American keyboards.

Localizing Splat
To load the sounds for a particular
language, you need to create a
resource DLL and store the local-
ized sound resources in that DLL.
Start by running Delphi’s Resource
DLL Wizard (which is available in
the Professional and Enterprise
editions, but not Standard).
Choose File|New... and invoke the
Resource DLL Wizard. Click Next to
get past the introductory screen
and into the Wizard (Figure 2). If
you have the Enterprise edition,
you can also run the Resource DLL
Wizard from the menu bar: choose
Project|Languages|Add... to run
the Wizard, skipping the introduc-
tory screen.

The Resource DLL Wizard pres-
ents you with a list of the projects
in your project group. By default all
the projects are checked. Only
Splat needs localization, so
uncheck the Recorder. If you
cannot see the project name,
change the column widths until
you can read the entire project
path. For each language, Delphi
will create a subdirectory from the
root directory. By default, the root
directory is the one that contains

the project. The last column shows
the current language, which is the
default language that Delphi uses
when running the program and it
cannot find a locale-specific
resource to match the user’s
locale.

If you load the Splat project in
Delphi, you must set the root direc-
tory to the directory that contains
the project. The default is the
directory where the project was
originally developed, which makes
sense on my system, but not on
yours.

Click the Next button to see the
list of languages that Windows sup-
ports. Scroll down the list and
check the languages you want to
add. This example uses Greek as an
additional language for Splat. Click
Next to see the languages you
chose. Delphi uses the language
and country name as the extension
for the resource DLL and as the

default name for the subdirectory.
You can change the directory
name, if you wish. Again, if the path
is too long, resize the column
header until you can read the
entire path name. Click Next again
to see the language status: New for a
new language or Update if the lan-
guage directory already exists.
Click Next one more time to see a
summary of what Delphi is about
to do. Click Finish to have Delphi
perform these actions, namely cre-
ating new projects for the resource
DLLs or updating existing projects.
Delphi compiles the Splat project
to make sure it has all the
resourcestring declarations and
forms updated. Then it copies the
necessary files to the new lan-
guage subdirectory and adds the
resource DLL projects to the
project group.

Finally, Delphi shows you a list
of all the resources that it knows
about (Figure 3). You can translate
individual captions on forms,
translate resourcestrings, and so
on. If you know Greek, you can
translate Press ESC to exit the pro-
gram. Splat doesn’t have any other
text that needs to be translated, so
the real work lies in making new
sound resources.

Delphi creates the ELL subdirec-
tory to contain a copy of the files
that need localizing. It copies all
the .RC and .DFM files, creates a
new .RC file for resourcestrings,
and creates a new .DPR for the
resource DLL itself. The file that is

Root Directory Settings
Delphi stores the root directory in the project options (.DOF) file. If you move
the project or rename the directory, the stored root directory will be wrong.
When you open the project, Delphi might notice the error and ask you to
enter a new root directory. If Delphi doesn’t notice the problem, or if you
cancel the dialog box, the next time you use the Resource DLL Wizard, Delphi
reports a mysterious File not found error, without telling you which file it
couldn’t find. If you have multiple projects in your project group, you can get
the File not found error if any project has an invalid root directory, even if
that project is not checked in the Wizard dialog box. Note that the Resource
DLL Wizard does not display the erroneous root directory in its dialog box,
but shows the project directory instead. Thus, you cannot see which project is
in error. So if you get the File not found error, manually set the root directory
for every project. If necessary, you can edit the .DOF file manually. Look for
the [Resource DLL Wizard] section and make sure the RootDir entry is empty
(if you don’t need any localization) or is set to the directory that contains the
project.

➤ Figure 2

36 The Delphi Magazine Issue 56

most important for Splat is
SoundRes.rc. As you recall from
last month’s article, this resource
script lists all the sound effects for
letter, digits, and other keys. You
need to make sure the file uses rela-
tive path names and that the ELL
directory has all the necessary
sound files. Use the new Recorder
to record the Greek letters in the
ELL\Sounds directory.

You might not want to duplicate
all the sounds, though. Some
sound effects are not language-
specific. To avoid including certain
sounds in the Greek resource DLL,
you need to modify SoundRes.rc.
Don’t modify the copy in the ELL
directory, Delphi creates that
automatically. Modify the master
copy in the root directory by
separating SoundRes.rc into three
parts: alphabet.rc, digits.rc and
fx.rc. The first can contain
language-specific letters. The
second contains language-specific
digits. The third contains the
sound effects that are not
language-specific. Use #include
directives in SoundRes.rc to
include the other files. In the ELL
directory, create an empty fx.rc
file. Set the alphabet.rc and
digits.rc files to include the sound
resources that you have localized.
Different languages have different
alphabets, so each alphabet.rc file
will be slightly different. The new
SoundRes.rc is now quite simple:

#include "alphabet.rc"
#include "digits.rc"
#include "fx.rc"

After making any change to the
main project, you should re-invoke
the Resource DLL Wizard in order
to update the resource DLLs. Even
though the Wizard is invoked

from File|New..., you are not cre-
ating anything new, just updating
the existing project. (In Delphi
Enterprise, choose Project | Lan-
guage | Update Resource DLLs.)

If you make a mistake in an .RC
file, Delphi doesn’t give you a
useful error message. It tells you
which line is erroneous, but you
need to figure out the error your-
self. The mistake is usually obvi-
ous. For example, if the error line is
a #include line, the included file
probably doesn’t exist. Once you
work out all the .RC errors, Delphi
can build the main project and
update the resource DLLs.

Running The Localized Splat
When an application starts, Delphi
tries to load a localized resource
DLL. A resource DLL sits in the
same directory as the application,
but its extension is that of a lan-
guage or language and country
(such as .ELL for Greek). Delphi
tries three ways to identify the
resource DLL extension.

First, Delphi looks under the
registry key HKEY_CURRENT_USER\
Software\Borland\Locales\, using
the full path (with expanded long
file names) of the application as
the entry name and the resource
DLL extension as the entry value.

Next, Delphi looks under the
key HKEY_CURRENT_USER\Software\
Borland\Delphi\Locales\ using the
full path of the application as the
entry name. This key is obsolete,
and you should always use the

plain Borland\Locales key for new
projects.

Thirdly, if no registry entry spec-
ifies the resource DLL extension,
Delphi checks the Windows locale.
It first looks for a language and
country code (such as FRS for
Swiss French), and if that doesn’t
work, it tries a plain language code
(such as FR for French).

At each step, the application
tries to load the DLL, and if it suc-
ceeds, it skips the remaining steps.
If the application loads a resource
DLL, it loads forms and resource-
string resources from the
resource DLL. You can load other
resources (such as the sound
resources) from this DLL by calling
FindResourceHInstance to obtain
the instance handle of the
resource DLL. Pass that instance
handle to any function that loads a
resource (such as PlaySound).

Not all the sounds are localized,
so some sounds are loaded from
the resource DLL and some from
the application. Because all the
calls to PlaySound are handled in
the PlayWave and PlayRandomWave
functions, it is easy to modify
them. They first try to load the
sound from the resource DLL, and
if that fails, the function tries to
load the sound from the applica-
tion. As before, if PlaySound fails
even to play a default sound, Splat
plays the system beep. Listing 5
shows the new PlayWave function.

To test the new Greek sounds,
run Regedit and create the appro-
priate registry key for your
Splat.exe file. Set the registry value
to ELL. Run Splat and press letters
to hear Greek. (My apologies to all
Greek readers. The sound files that
accompany this article are based
on how I learned Greek letters in
math and science classes in the

➤ Figure 3

// Play the named WAVE resource. The resource might be located in
// the locale-specific DLL or in the main application. Try the DLL
// first, then the application. If all else fails, use a default beep.
procedure TMainForm.PlayWave(const Name: string);
var
ResName: PChar;

begin
ResName := StringToResID(Name);
if not PlaySound(ResName, FindResourceHInstance(hInstance),
Snd_Resource or Snd_Async or Snd_NoDefault) then
if not PlaySound(ResName, hInstance, Snd_Resource or Snd_ASync) then
Beep;

end;

➤ Listing 5

April 2000 The Delphi Magazine 37

USA, and do not necessarily have
any relationship to correct Greek
pronunciation.)

Adding More Shapes
Now that you have lots of sounds in
multiple languages, you might
want to add more shapes. The
Splat framework makes it easy to
add new shape classes. The pro-
gram’s name comes from a shape
that looks like a paint splat. The
shape is drawn by a Windows
metafile. A Windows metafile is a
binary file that contains graphical
commands. The commands corre-
spond to the graphical function
calls that you can use to draw on a
Windows device context. From one
point of view, a metafile is simply a
persistent form of drawing on a
canvas. The TMeta- fileShape class
in Splat draws the metafile in the
Draw method. (Windows has old
metafiles and newer metafiles,
called enhanced metafiles. Splat
supports only enhanced metafiles,
which are device-independent.
The basic principles apply to both
kinds.)

One of the key differences
between a metafile and the other
shapes is that Splat draws a
metafile with its original aspect
ratio. Windows lets you draw a
metafile with any aspect ratio, but
Splat preserves the aspect ratio to
avoid distorting the shape.
TMetafileShape overrides Change-
Size so the x and y sizes grow at the
same rate, instead of the default
behavior which lets them grow at
different rates.

The other interesting twist that
metafiles introduce is that a

metafile’s colors are static, as pre-
served in the file. Having shapes
change color is part of the fun of
Splat, though, so Splat plays a trick
with the metafile. TMetafileShape
changes the metafile’s use of black
to the shape’s random color. Black
would not ordinarily show up
against the black background
anyway, so it seems like a safe
choice for mapping to the shape’s
color. If you have a shape that
needs to be partially black, you can
use a color that is almost black,
such as $010101. The user will see
the color as black, but Splat will not
and so will not try to adjust the
color.

In order to implement the color
trick, you need to understand the
structure of a Windows metafile. A
metafile is a stream of records. The
first record is a header that con-
tains information about the
metafile. After the header record,
each metafile record represents a
Windows API function for display-
ing graphical objects. Drawing a
metafile is called ‘playing’ the
metafile, which means interpreting
each record in succession and call-
ing the API function that the record
represents. Windows has API func-
tions for playing back an entire
metafile at once, or for examining
and playing a metafile one record
at a time. Splat uses the latter func-
tion so it can adjust the colors
when needed.

The metafile records that must
be changed are those that deal
with colors. A quick look through
the Windows API documentation
reveals the following functions:
SetTextColor, SetBkColor, Create-

Pen, CreatePenIndi-
rect, and CreateBrush.
CreatePen and Create-
PenIndirect are just
variations of the same
function, so they have
a single metafile
record to represent
both functions. Thus,
Splat needs to alter
four different kinds of
metafile records. For
each record, it must

check the color, and if the color is
black, change the color to the
shape’s color. To examine every
record in a metafile, call EnumEnh-
Metafile. It takes a callback func-
tion as an argument, and Windows
calls the callback, passing each
metafile record to the function.
The metafile record begins with a
size and a record type. The call-
back function uses the record type
to decide what to do with the
record.

Splat could modify the record in
one of two ways. First, Splat could
make a temporary copy of the
record, change the color in the
copy, and play the copy. Second,
Splat could change the color in the
original record and restore the
original color after playing the
record.

The advantage of the first choice
is that you don’t risk modifying the
existing metafile. On the other
hand, the record size is variable,
and you would need to use
dynamic memory allocation for
the copy, so the second method is
faster and simpler. The color
change affects only the in-memory
copy of the metafile and has no
effect on the actual file on disk.

A case statement in the callback
function checks for the four color-
related records and finds the color
field in each record. Other records
are left alone. Palette colors, for
example, are left untouched for the
sake of simplicity.

To make it dead simple to create
metafile shapes, the TMetafile-
Shape class automatically loads a
metafile resource whose name is
the same as the class name (minus
the leading T). Thus, you can trivi-
ally add new metafile shapes to
Splat by adding the metafile
resource and declaring a one-line
class that inherits from TMetafile-
Shape.

The Splat program gets its name
from the metafile shape TSplat,
which is a fun shape that looks like
a paint splat. Its class declaration
is trivial:

// automatically loads the
// “Splat” metafile resource
type TSplat =
class(TMetafileShape);

➤ Figure 4

38 The Delphi Magazine Issue 56

type
// Metafile shape. The shape is stored as a metafile
// resource. The initial size is small and increases with
// each generation. When the metafile is played, the basic
// colors are changed the shape's main color.
//
// Derived classes must call LoadMetafileResource or
// otherwise create the resource in the Metafile property.
//
// TMetafileShape is an abstract class (although it lacks
// abstract methods). Concrete classes derive from
// TMetafileShape and provide an actual metafile resource.
// By default, the class name is the resource name
// (after removing the leading T).
TMetafileShape = class(TShape)
private
fMetafile: TMetafile;
fBounds: TRect;

protected
procedure LoadMetafileResource(
const ResID, ResType: PChar);
function ResourceType: PChar; virtual;
function ResourceName: string; virtual;

public
constructor Create(Position: TPoint); override;
destructor Destroy; override;
procedure AfterConstruction; override;
procedure Draw(Canvas: TCanvas); override;
procedure ChangeSize; override;
property Metafile: TMetafile read fMetafile;
property Bounds: TRect read fBounds;
property Left: Integer read fBounds.Left
write fBounds.Left;

property Right: Integer read fBounds.Right
write fBounds.Right;

property Top: Integer read fBounds.Top
write fBounds.Top;

property Bottom: Integer read fBounds.Bottom
write fBounds.Bottom;

end;
procedure TMetafileShape.AfterConstruction;
begin
inherited;
LoadMetafileResource(PChar(ResourceName), ResourceType);

end;
constructor TMetafileShape.Create(Position: TPoint);
begin
inherited;
fMetafile := TMetafile.Create;

end;
destructor TMetafileShape.Destroy;
begin
FreeAndNil(fMetafile);
inherited;

end;
// Playback a single metafile record, changing the
// background color to the shape's own color. Do not change
// the actual metafile record.
function EnumFunc(DC: HDC; Table: PHandleTable; Emfr:
PEnhMetaRecord; NumObjects: DWord; Self: TMetafileShape):
LongBool; stdcall;

var ColorPtr: ^COLORREF;
begin
ColorPtr := nil;
case Emfr.iType of
Emr_SetTextColor:
with PEmrSetTextColor(Emfr)^ do
if crColor = BackgroundColor then
ColorPtr := @crColor;

Emr_SetBkColor:
with PEmrSetBkColor(Emfr)^ do
if crColor = BackgroundColor then
ColorPtr := @crColor;

Emr_CreateBrushIndirect:
with PEmrCreateBrushIndirect(Emfr)^ do
if lb.lbColor = BackgroundColor then
ColorPtr := @lb.lbColor;

Emr_CreatePen:
with PEmrCreatePen(Emfr)^ do
if lopn.lopnColor = BackgroundColor then
ColorPtr := @lopn.lopnColor;

else
; // Otherwise, leave the record alone.

end;
// Set the metafile color to the shape's color.
if ColorPtr <> nil then

ColorPtr^ := Self.Color;
Win32Check(PlayEnhMetaFileRecord(DC, Table^, Emfr^,
NumObjects));

// Restore the record's original color.
if ColorPtr <> nil then
ColorPtr^ := BackgroundColor;

Result := True;
end;
// Draw a metafile by enumerating the metafile records.
procedure TMetafileShape.Draw(Canvas: TCanvas);
var
OldPalette, NewPalette: HPalette;
Rect: TRect;

begin
BoundingBox(Rect);
// Metafile bounds include right and bottom do decrement
Dec(Rect.Right);
// the TRect bounds, which ordinarily do not include them.
Dec(Rect.Bottom);
OldPalette := 0;
NewPalette := Metafile.Palette;
if NewPalette <> 0 then begin
OldPalette :=
SelectPalette(Canvas.Handle, NewPalette, True);

RealizePalette(Canvas.Handle);
end;
Win32Check(EnumEnhMetaFile(Canvas.Handle, Metafile.Handle,
@EnumFunc, Self, Rect));

if NewPalette <> 0 then
SelectPalette(Canvas.Handle, OldPalette, True);

end;
// Load a metafile resource. The resource might be in the
// resource DLL or the main application.
procedure TMetafileShape.LoadMetafileResource(const ResID,
ResType: PChar);

var
ResInstance: THandle;
Stream: TResourceStream;

begin
ResInstance := FindResourceHInstance(hInstance);
if FindResource(ResInstance, ResID, ResType) = 0 then
ResInstance := hInstance;

Stream := TResourceStream.CreateFromID(ResInstance,
Integer(ResID), ResType);

try
Metafile.LoadFromStream(Stream);

finally
Stream.Free;

end;
// The initial size is square--keep the original aspect
// ratio by shrinking the smaller dimension to match the
// metafile.
if Metafile.Width > Metafile.Height then
YSize := MulDiv(XSize, Metafile.Height, Metafile.Width)

else
XSize := MulDiv(YSize, Metafile.Width, Metafile.Height);

end;
// Compute the next size, trying to maintain the metafile's
// aspect ratio.
procedure TMetafileShape.ChangeSize;
var
Delta: Integer;

begin
Delta := Random(DeltaDimension);
if Metafile.Width > Metafile.Height then begin
XSize := XSize + Delta;
YSize := YSize +
MulDiv(Delta, Metafile.Height, Metafile.Width);

end else begin
XSize := XSize +
MulDiv(Delta, Metafile.Width, Metafile.Height);

YSize := YSize + Delta;
end;

end;
// Default resource name is the same as the class name,
// minus the leading 'T'.
function TMetafileShape.ResourceName: string;
begin
Result := Copy(ClassName, 2, MaxInt);

end;
// Default resource type is 'Metafile'. The resource type
// is not case sensitive.
function TMetafileShape.ResourceType: PChar;
begin
Result := 'Metafile';

end;

The TMetafileShape class loads the
resource, but before doing so, the
shape object must be fully initial-
ized and ready to go. TMetafile-
Shape cannot guarantee anything
about classes that inherit from it,
so the safest way to load the
resource is to wait until after the

constructors have finished their
work. The AfterConstruction
method serves this purpose neatly
and effectively. Delphi automati-
cally calls the virtual method
AfterConstruction after the con-
structor has returned. TMetafile-
Shape overrides AfterConstruction

to load the resource. A derived
class can take care of any and all
initialization in its constructor
without any concerns about when
to call the inherited constructor.
Listing 6 shows the TMetafileShape

➤ Listing 6

40 The Delphi Magazine Issue 56

class, and Figure 4 shows a Splat
game in progress with several splat
shapes evident.

Compressing The
Sound Resources
Splat is a fat program. The more
sound effects you add, the larger
the Splat.exe file grows. You can
shrink the file size by about 30% by
compressing the .WAV resources.
Delphi comes with compression
software in the ZLIB unit. The
source is in the Info\Extras direc-
tory on the Delphi CD-ROM. The
simplest way to compress data is
to create a TCompressionStream,
which reads from another stream
and compresses data on the fly.
TDecompressStream expands data
that it reads from a stream.

The first step is to create com-
pressed .WAV files by modifying
the Recorder. ZLIB-compressed
.WAV files are not a standard
format, so there is no convention
for the file name extension. The
Recorder uses .ZWAV, which
requires some minor bookkeeping
changes, such as listing *.ZWAV files
in the list view.

The major change is to save a
.ZWAV file. The simplest way is to
ask Windows to save a .WAV file,
and then compress the file. This
approach requires the fewest

changes to the Recorder. The
FormKeyUp method still saves the
.WAV file, but after saving the file,
FormKeyUp calls the Compress
procedure to compress the file to
a .ZWAV file, and then it deletes
the .WAV file. The Compress proce-
dure uses TCompressStream and
TFileStream to read one file,
compress it, and write to another
file. Listing 7 shows the Compress
procedures that compress files
and streams.

That’s it. The Recorder is now
ready to use for recording
compressed .ZWAV files. An exer-
cise for the reader is to write a pro-
gram that compresses existing
.WAV files to .ZWAV files (by
calling Compress, of course).

The next step is to modify Splat.
Edit the alphabet.rc, digits.rc, and

// Compress the WAVE data from InStream onto OutStream.
procedure Compress(InStream, OutStream: TStream);
var
InBuffer, OutBuffer: Pointer;
OutSize: LongInt;

begin
InBuffer := nil;
OutBuffer := nil;
try
GetMem(InBuffer, InStream.Size);
InStream.ReadBuffer(InBuffer^, InStream.Size);
CompressBuf(InBuffer, InStream.Size, OutBuffer, OutSize);
OutStream.WriteBuffer(OutSize, SizeOf(OutSize));
OutStream.WriteBuffer(OutBuffer^, OutSize);

finally
FreeMem(InBuffer);
FreeMem(OutBuffer);

end;
end;
// Compress the WAVE data from InFile to OutFile.
procedure Compress(const InFile, OutFile: string);
var
InStream, OutStream: TFileStream;

begin
InStream := nil;
OutStream := nil;
try
InStream := TFileStream.Create(InFile, fmOpenRead or fmShareDenyWrite);
OutStream := TFileStream.Create(OutFile, fmCreate);
Compress(InStream, OutStream);

finally
InStream.Free;
OutStream.Free;

end;
end;

➤ Listing 7

➤ Listing 8

// Load the sound data and decompress it into OutBuf.
// Return True for success, False if the sound resource or
// file could not be loaded.
function LoadSound(pszSound: PChar; hmod: HINST; fdwSound:
Cardinal; var OutBuf: Pointer): Boolean;

var
InBuf: PZWaveData;
FreeInBuf: Boolean;
OutSize: Integer;

begin
InBuf := nil;
OutBuf := nil;
FreeInBuf := False;
try
if (fdwSound and Snd_FileName) = Snd_FileName then begin
// pszSound is a file name. PlayCompressedSound must
// free InBuf.
if not GetFileContents(pszSound, InBuf) then begin
Result := False;
Exit;

end;
FreeInBuf := True;

end else if (fdwSound and Snd_Resource) = Snd_Resource
then begin
// pszSound is a resource name. Windows frees InBuf,so
// PlayCompressedSound must not free it.
if not GetResourceContents(hmod, pszSound, InBuf)
then begin
Result := False;
Exit;

end;
end else if (fdwSound and Snd_Memory) = Snd_Memory
then begin
// pszSound points to the sound data in memory.
// PlayCompressedSound must not free the memory--that
// is the caller's responsibility.
InBuf := PZWaveData(pszSound);

end else begin
// Must be a registry alias (Snd_Alias), or something
// else, such as Snd_Purge. Let PlaySound handle this

// case. In particular, aliases cannot be compressed
// because they are used by other programs that don't
// know about ZWAVEs.
Result := PlaySound(pszSound, hmod, fdwSound);
Exit;

end;
// Decompress the data. The estimated size is twice the
// input size. Most ZWAVE files are about 50-60% of the
// original size.
DecompressBuf(@InBuf.Data, InBuf.Size, 2*InBuf.Size,
OutBuf, OutSize);

// Remember this sound.
Cache.Add(pszSound, hmod, fdwSound, OutBuf);

finally
if FreeInBuf then
FreeMem(InBuf);

end;
Result := True;

end;
// Look up a compressed sound in the cache. If it isn't
// present, load and decompress the sound data. Then play
// the decompressed sound.
function PlayCompressedSound(pszSound: PChar; hmod: HINST;
fdwSound: Cardinal): LongBool;

var
Buffer: Pointer;

begin
Buffer := Cache.Lookup(pszSound, hmod, fdwSound);
if Buffer = nil then begin
Result := LoadSound(pszSound, hmod, fdwSound, Buffer);
if Buffer = nil then
Exit;

end;
// Play the sound from memory.
fdwSound := (fdwSound and not (Snd_Resource or
Snd_FileName)) or Snd_Memory;

Result := PlaySound(Buffer, 0, fdwSound);
end;

April 2000 The Delphi Magazine 41

fx.rc files to use compressed
.ZWAV files: change the resource
type from WAVE to ZWAVE, and change
the file extensions from .WAV to
.ZWAV.

The final step is to modify Splat
to play back the compressed
sound resources. Change the refer-
ences to the WAVE resource type to
ZWAVE. Change the PlaySound calls
to PlayCompressedSound. The Play-
CompressedSound function takes the
same arguments as PlaySound, but
it plays a ZWAVE compressed sound
from a file or resource. It does so
by loading the compressed sound,
decompressing it into memory,
and calling PlaySound with the
Snd_Memory flag. Other flags (such
as Snd_Async) are passed to
PlaySound.

On an older, slower, system, all
this decompressing can be time
consuming. Imagine a child leaning
on one key (my son likes the space
bar), repeatedly playing that
sound. It is wasteful to decompress
the sound every time the user
presses the key. Instead, Play-
CompressedSound keeps a cache of
the most recently decompressed
sounds. Listing 8 shows how
PlayCompressedSound works.

The cache is implemented by the
TZWaveCache class. It keeps a linked
list of TZWaveCacheNode records, in
most-recently-used order. Each
record stores a copy of the
arguments that were passed to
PlayCompressedSound. Each node
also keeps a copy of the

decompressed sound. When Play-
CompressedSound is called, it checks
the cache for identical arguments,
and if it finds a match, it moves that
node to the start of the list, and
plays the sound. Repeatedly press-
ing the same key results in a fast
response. Because the cache uses
a linked list, its size should be
small. If you need to cache many
sounds, you should change the
linked list to a hash table and
devise a suitable hash function.
Listing 9 shows the declarations of
TZWaveCache and its associated
types. Most of the code that imple-
ments the cache is for managing
the linked list; consult the com-
plete code on the disk for details.

To give you an idea of how the
cache works, Listing 10 shows the
SameSound function, which deter-
mines whether a call to Play-
CompressedSound is a cache hit or
miss.

Splat And Polish
Splat still has some rough edges.
For example, press the Windows+M
key combination to minimize all
applications, and Splat minimizes,
too. Disabling the Minimize icon
doesn’t help in this case. Instead,
Splat must intervene when it
receives a Wm_ShowWindow message
that says its parent window is
closing. Listing 11 shows the
WmShowWindow message handler.

type
// A ZWAVE file or resource has the following format: the
// first four bytes contain the size of the compressed
// data, which follow immediately after the size. Resource
// should always contain an explicit size field because
// Windows pads resource data to fit on longword
// boundaries.
PZWaveData = ^TZWaveData;
TZWaveData = packed record
Size: 0..MaxInt;
Data: TByteArray;

end;
PZWaveCacheNode = ^TZWaveCacheNode;
TZWaveCacheNode = record
// Save the arguments to PlayCompressedSound to look for
// a match.
pszSound: Pointer;
strSound: string;
hmod: HINST;
fdwSound: DWORD;
Data: PZWaveData;
Next: PZWaveCacheNode;
Prev: PZWaveCacheNode;

end;
// Cache the most recently used ZWAVE data, to avoid
// repeatedly uncompressing the same ZWAVE file or
// resource. Zero means no caching (except that Snd_Async

// requires a cache size of at least 1). The cache is
// searched linearly, so don't use a large cache size.
// To avoid problems, the maximum size is set arbitrarily
// to 100.
TZWaveCacheSize = 0..100;
TZWaveCache = class
private
fHead, fTail: PZWaveCacheNode;
fCount: TZWaveCacheSize;
fCapacity: TZWaveCacheSize;
procedure SetCapacity(NewCapacity: TZWaveCacheSize);

protected
function Invariant: Boolean;
procedure Add(pszSound: PChar; hmod: HINST; fdwSound:
DWORD; Buffer: PZWaveData);

procedure FreeNode(Node: PZWaveCacheNode);
function Lookup(pszSound: PChar; hmod: HINST; fdwSound:
DWORD): PZWaveData;

property Head: PZWaveCacheNode read fHead;
property Tail: PZWaveCacheNode read fTail;

public
constructor Create;
destructor Destroy; override;
property Count: TZWaveCacheSize read fCount;
property Capacity: TZWaveCacheSize read fCapacity
write SetCapacity default 1;

end;

➤ Listing 9
// Return True if Node matches the arguments pszSound, hmod, and fdwSound
// which are from a call to PlayCompressedSound. Return False if the
// arguments differ at all.
function SameSound(Node: PZWaveCacheNode; pszSound: PChar; hmod: HINST; fdwSound:
DWORD): Boolean;

begin
if Node.fdwSound <> fdwSound then
// Flags must match exactly.
Result := False

else if Node.hmod <> hmod then
// Module handle must match exactly. If the handle is not used,
// the caller must use 0.
Result := False

else if (Node.pszSound = nil) and (Node.strSound <> '') then
// If the stored sound has a string name (file or resource name),
// compare the strings.
Result := SameText(Node.strSound, pszSound)

else
// Otherwise, the sound pointer is a resource ID or memory pointer,
// both of which can be compared verbatim.
Result := pszSound = Node.pszSound

end;

➤ Above: Listing 10 ➤ Below: Listing 11

procedure TMainForm.WMShowWindow(var Message: TWMShowWindow);
begin
// The user cannot minimize Splat, but pressing Windows+M
// minimizes all windows. Prevent Splat from minimizing
// by intercepting the Wm_ShowWindow message.
if not Message.Show and (Message.Status = Sw_ParentClosing) then
Message.Result := 0

else
inherited;

end;

42 The Delphi Magazine Issue 56

Another problem occurs when
the user presses the Caps Lock, Num
Lock, or Scroll Lock keys. When
Splat exits, the keyboard state has
been changed. The intended user
is a child who doesn’t know one
key from another, and it is likely
that these keys will be pressed.
The polite thing to do is for Splat to
restore the original settings of the
keyboard state. Unfortunately,
Windows does not have an API
function to set the keyboard state
at a global level, only for a single
process. The solution is to pretend
the user pressed the Caps Lock key
etc. By simulating a keypress, you
can change the global keyboard
state. Call keybd_event to simulate
pressing a key. (Note that Windows
95 does not let keybd_event change
the Num Lock key, only Caps Lock and
Scroll Lock.)

The FormCreate method saves
the state of the toggle keys in
Boolean fields: CapsLock, NumLock,
and ScrollLock. It does so by call-
ing IsKeyToggled for Vk_CapsLock,
etc, as shown in Listing 12. The
FormDestroy method restores the

state of each key. If the original
state is different from the current
state, Splat calls keydb_event to
simulate a keypress. Listing 13
shows SetKeyState and how it is
called. Windows does not declare
any constants for the standard
scan codes, so you must declare
them explicitly. (The simplest way
to learn a key’s scan code is to
write a small program that dis-
plays the scan code of any key you
press.)

Put all the pieces together and
rebuild Splat. You now have a
game the whole family can play.
Splat and enjoy!

Ray Lischner is the author of
Delphi in a Nutshell and other
books and articles about Delphi.
He also teaches computer science
at Oregon State University. You
can reach Ray at delphi@
tempest-sw.com

// Return True if the key with virtual key code KeyCode is in the toggled (down)
// state. The caller supplies the keyboard state so IsKeyToggled doesn't have to
// call GetKeyboardState repeatedly.
function IsKeyToggled(const KeyState: TKeyboardState; KeyCode: Word): Boolean;
begin
Result := (KeyState[KeyCode] and 1) <> 0;

end;
procedure TMainForm.FormCreate(Sender: TObject);
var
KeyState: TKeyboardState;

begin
...
// Get the keyboard state to determine the status of Caps Lock, Num Lock, and
// Scroll Lock.
Win32Check(GetKeyboardState(KeyState));
CapsLock := IsKeyToggled(KeyState, Vk_Capital);
NumLock := IsKeyToggled(KeyState, Vk_NumLock);
ScrollLock := IsKeyToggled(KeyState, Vk_Scroll);
...

// Simulate a press of the key with the given virtual key code and scan code.
procedure SetKeyState(KeyCode, ScanCode: Word);
begin
keybd_event(KeyCode, ScanCode, KeyEventF_ExtendedKey, 0);
keybd_event(KeyCode, ScanCode, KeyEventF_ExtendedKey or KeyEventF_KeyUp, 0);

end;
procedure TMainForm.FormDestroy(Sender: TObject);
const
CapsLock_ScanCode = $3A;
NumLock_ScanCode = $45;
ScrollLock_ScanCode = $46;

var
KeyState: TKeyboardState;

begin
// Restore the Caps Lock, Num Lock, and Scroll Lock keys.
Win32Check(GetKeyboardState(KeyState));
if IsKeyToggled(KeyState, Vk_Capital) <> CapsLock then
SetKeyState(Vk_Capital, CapsLock_ScanCode);

if IsKeyToggled(KeyState, Vk_NumLock) <> NumLock then
SetKeyState(Vk_NumLock, NumLock_ScanCode);

if IsKeyToggled(KeyState, Vk_Scroll) <> ScrollLock then
SetKeyState(Vk_Scroll, ScrollLock_ScanCode);

...

➤ Above: Listing 12 ➤ Below: Listing 13

	International Splat
	Localization
	Internationalizing The Recorder
	Localizing Splat
	Root Directory Settings
	Running The Localized Splat
	Adding More Shapes
	Compressing The Sound Resources
	Splat And Polish

